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Integrated Sensing and Communication (ISAC)
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ISAC Waveform Requirements

ü Both communication and sensing utilize electromagnetic waves.
ü ISAC requires waveforms that are well-suited for both functions.

A waveform is fundamentally a continuous-time real-valued signal.

§ Modulation: Channel-oriented design, orthogonality, capacity, complexity, etc.

§ Radar: High sensitivity, high time-frequency (TF) resolution

• Connected Intelligence

• Modulation waveform：Not necessarily suitable for sensing.

• Radar waveform: Not sufficient for communication.

• A straightforward solution: Combining two types of waveforms

• Questions:  How? Any underlying logic behind the combination?



Orthogonal pulses / Basis functions
Core of modulation scheme

Modulation Waveform

4

Amplitude

Carrier frequency

Frequency PhaseReal-valued passband signal :
Pulse (envelop)

(Duration !!, Bandwidth "! )

Complex-valued baseband signal : (coherent, ideal synchronization)

Analog modulation： #" , %" , &"(() are continuous-valued (AM,FM,…)

Digital modulation： #" , %" , &"(() are discrete-valued (PSK,FSK,QAM,…)

Transmit pulse (filter)

Carrier phase

Can be used for modulation



N/A

Cellular 
Evolution 1G (1980’s) 2G (1990’s) 3G (2000’s) 4G (2010’s) 5G (2020’s)

Data Rate 2.4 kbps 64 kbps 100 kbps - 56 Mbps Up to 1 Gbps > 1 Gbps
&# 800-900 MHz 850-1900MHz 1.6-2.5GHz 2-8 GHz Sub- 6GHz, mmWave

Modulation FDMA TDMA CDMA OFDM OFDM

• Modulations are designed to achieve high transmission efficiency and to deal with fading and interference.

• OFDM is fundamentally designed for linear time-invariant (LTI) channels

• OFDM has difficulty coping with doubly selective linear time-varying (LTV) channels (delay and Doppler effects)

Pulse/Filter N/A Gaussian
RRC (chip) pulses 

modulated by spreading 
code

Complex-Sinusoids/ 
Subcarriers/Tones truncated by 

rectangular pulse

Complex-Sinusoids/ 
Subcarriers/Tones truncated 

by rectangular pulse
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Modulation Waveforms in Cellar Systems



Radar Waveforms
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Constant envelope continuous wave：

FMCW (Frequency Modulated Continuous Wave)

Constant envelope non-continuous wave：

Pulse Radar
Rectangular pulse

(duration !$ , bandwidth ∝ 1/!$ )
Pulse train

Pulse interval (! ≫ !%)

Rectangular pulse
(duration !&, bandwidth ∝ 1/!& )

• Aiming for high delay-Doppler resolution, i.e., high time-frequency (TF) resolution

• FMCW：Basically, FM signal. Because of !"! ≫ 1/"!, transmission efficiency is not high

• Pulse Radar：No signal transmission between two adjacent pulses (" ≫ ""), transmission efficiency is low.

Chirp rate (. ≫ 1/!&' ⟹ .!& ≫ 1/!& )



ISAC Waveform Consideration
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Mutually orthogonal 
pulses that match to 

channel characteristics

Pulse with high TF 
resolution

ü For ISAC, we prefer orthogonal pulses whose orthogonality 
is defined with respect to high TF resolution.

Modulation Radar

Ø The highest TF resolution is the delay-Doppler (DD) resolution.
Ø Any channel characteristics associated with the DD resolution?



Ø Doubly-selective channel with both time and frequency dispersions

Ø Statistical models: WSSUS, Rayleigh, Rician, Nakagami-m

Ø Deterministic model: delay-Doppler spread function, namely spreading function 
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Mobile Channel Models



Modulation
RF

modulator

Digital 
symbols

Analog 
waveform

BPF

Demodulation RF
demodulator

Digital 
symbols

Analog 
waveform

BPF
Receiving or 
Anti-aliasing  

Filter

Propagation 
Channel

Can be jointly modelled as a low-pass filter

Sampling

Tx

Rx

Equivalent Sampled Delay-Doppler Domain (ESDD) Channel Model

• P. Bello, “Characterization of randomly time-variant linear channels,” IEEE Trans. Commun. Syst., vol. 11, no. 4, pp. 360–393, 1963.
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DD Domain in Practical Systems

: Nominal bandwidth

0(() with occupied bandwidth "( ≤ 2
and duration !( ≤ 3

Channel Bandwidth: & ≥ (# ≥ (
Channel Duration: ) ≥ "# ≥ "



Ø In practice, we observe an on-grid DD domain, due to the limited bandwidth and duration of signal.

Ø Physical unit of delay and Doppler are time and frequency, respectively. 

Ø On-grid DD domain is exactly an on-grid TF domain : Frequency grid -> Multi-Carrier Waveform

Ø DD domain waveform in practice is a DD domain multi-carrier (DDMC) waveform
10

On-Grid DD Domain in Practice

Doppler

delay

DD Channel 
(off-grid)

(ℎ!, 5!, 6!)

Doppler (frequency)

delay (time)

ESDD Channel 
(on-grid)



Common Channel Characteristics
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Ø For communications, the best choice of pulses may be the eigenfunctions of the channel.

Ø The underspead LTV/DD channels at best have a structured set of approximate eigenfunctions, which are 

even channel-dependent (not common).
Ø W. Kozek and A. Molisch, “On the eigenstructure of underspread WSSUS channels,” in Proc. IEEE SPAWC, 1997, pp. 325–328.

Ø Because DD resolution is determined by the signal, ESDD Channels have a common DD resolution ()* ,
)
+).

Ø DD domain waveform : Design an MC waveform according to the DD resolution ()* ,
)
+)

LTI Channels LTV/DD Channels

Common 
Characteristics

Bandwidth 2 ≥ "

Duration 3 ≥ !

Delay resolution: )*

Eigenfunction 8,'-./ , −∞ ≤ ( ≤ +∞

Bandwidth 2 ≥ "

Duration 3 ≥ !

DD resolution: ()* ,
)
+)



Waveform Comparison
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Waveform Single Carrier CDMA OFDM FMCW Pulse Radar

Channel 
characteristics

/ pulse shape used

Bandwidth 
/ RRC pulse

RRC pulse train 
modulated by 

spreading code

Eigenfunction of 
LTI channel 
/truncated 

complex sinusoids

Chirp Rectangular 
pulse train

Transmission 
Efficiency

〇 〇 〇 × ×

Equalization
（LTI Channel） △ 〇 ◎ 〇 〇

Equalization
（LTV Channel） △ △ △ 〇 〇

Sensing/Radar
（LTV Channel） △ △ △ ◎ ◎

• DDMC may enable both channel-matched communication and high TF resolution.



Ø 0(() is well known as OFDM for rectangular <(() and pulse-shaped (PS) OFDM for non-rectangular <(().
Ø At the Rx, matched filtering (or correlators) → extract digital symbols → equalization. 

Ø Prefer (bi)orthogonal pulses that remain orthogonal even after channel distortion

Such pulses/functions are known as
Weyl Heisenberg (WH) /Gabor set

Digital symbol / number
drawn from a constellation

o G. Matz, H. Bolcskei, and F. Hlawatsch, “Time-frequency foundations of communications: Concepts and tools,” IEEE Signal 

Process. Mag., vol. 30, no. 6, pp. 87–96, 2013.

o B. Le Floch, M. Alard and C. Berrou, "Coded orthogonal frequency division multiplex," Proc. IEEE, vol. 83, no. 6, pp. 982-996, 1995.

Subcarrier/Tone, a.k.a.
eigenfunction of LTI channel
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Multi-Carrier (MC) Modulation

Prototype pulse usually
orthogonal w.r.t. ∆!, ∆>



OFDM/PS-OFDM

symbol period14

IDFT/DFT

1. Given ∆+, we have 
symbol period " =
1/∆+

2. For ∆", find  -(/)
(OFDM/PS-OFDM)

3. Symbol period ",  
symbol interval ∆" , 
and symbol duration
"$ are three different 
parameters!

4. Truncate the 
subcarriers using -(/)

5. IDFT-based 
implementation



It is all about Ambiguity Function!
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Ø Ambiguity function (AF):  Cross-correlation of a pulse <(() and its TF-shifted version given by 

Ø In MC modulation design, we aim for orthogonality or (bi)orthogonality with respect to the TF resolution (Δ!, Δ>)

Ø In a general off-grid DD channel, a propagation path (ℎ!, 5!, 6!) TF-translates the pulse to

Ø Then, with the receive pulse @(() , the receiver performance depends on the AF

Ø For radar or sensing application, the best pulse is the ideal TF/DD domain 2D-impulse that yields an impulsive AF



frequency

time
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Uncertainty Principle

Doppler

Ø A pulse in the real world is always a 1D function, represented in either the time or the frequency domain.

Ø Let A!0, A"0 be the standard deviations of <(() and B(&), respectively. A!0×A"0 is called the TF area (TFA) .

Ø According to the uncertainty principle, the TFA obeys a lower bound A!0A"0 ≥ )
1- ≈ 0.0796.

Ø The ideal 2D-impulse does not exist, and the impulsive AF is unachievable.

delay

Inter-dependent TF domain for pulse design

Ideal 2D-impulse 
violates the 

uncertainty principle 

Pulse in 
the real world

Impulsive AF of ideal 2D-Impulse

TFA ≥ )
1-

Unachievable!



Doppler (frequency)

delay (time)

Ø For sensing applications, we usually aim to suppress the AF-based integrated side-lobe level (ISLL).

Ø Given the on-grid DD domain in practice, should we instead consider the on-grid AF ?

Ø Is there any pulse that can achieve the minimum ISLL of the on-grid AF?  Yes!
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On-Grid Ambiguity Function

On-grid DD Domain



DD Domain Orthogonal Pulse (DDOP)

a(t− nT0)

1

T0

−

M

2T0

M

2T0
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Root Nyquist Pulse
for Nyquist Interval  %!&



DDOP’s Ambiguity Function
Au,u

(

m
T0

M
,n

1

NT0

)

= δ(m)δ(n), ∀|m| ≤ M − 1, |n| ≤ N − 1
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TF-Translated DDOP

Effective 
TF region
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Delay (time) resolution
(symbol interval) "!#



Orthogonal Delay-Doppler Division Multiplexing (ODDM)

Ø DD domain/plane 

orthogonal pulse 

(DDOP)

Ø A pulse-train can 

achieve the 

orthogonality among 

subcarriers

Ø Orthogonality among 

symbols can be 

achieved by employing 

Nyquist/Root Nyquist 

elementary pulse.

Ø WH subset based

waveform designsymbol period21

Nyquist/Root Nyquist 
elementary pulse



Underlying Logic of DDOP
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DD domain 
2D-impulse DDOP

Time duration Short Long
Frequency bandwidth Narrow Wide
Uncertainty Principle Violates, doesn’t exist Doesn’t violate, exist

Pseudo-2D-impulse
in on-grid DD domain !

• DDOP is a type of pulse radar.

• By staggering symbols, transmission efficiency is high.

• To suppress ISI, root Nyquist pulse is adopted in the pulse train.

Combines key characteristics 
of radar and modulation waveforms

slow time

fast time



From the Perspective of Sequence-based Waveform Design
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• A popular approach to waveform design is based on sequence optimization.

• Discrete-time sequence ⇒ DD resolution fixed

• Sequence-based AF = on-grid AF

• Sequence optimization to suppress ISLL → based on on-grid AF

• Minimum on-grid-AF-based ISLL can be achieved by the DDOP (within corresponding DD range)

delay resolution

1/Doppler resolution



Waveform-Level Simulations
Ø Waveform-level simulations are crucial for comparing waveforms with different bandwidths.

Ø The received signal is a superposition of the noiseless channel output and AWGN.

Ø Discrete-time signal for simulation : K . = K23 . + M[.]
Ø Sampling interval :  !4

Ø Anti-aliasing filter bandwidth : P = )
+!

Ø Waveform-level simulation：oversampling-based

Ø Simulation bandwidth : P = )
+!
≫ "( + ∆"

Ø Noise samples M[.] have high power : Q5 = R&P

Ø Since the SNR depends on P,  we prefer 6"7# =
6!/9:;$<%

7#
.

Ø The simulation results should be independent of P, as long as P = )
+!
≫ "( + ∆".
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PSD

Ideal AWGN (infinite bandwidth and therefore infinite power)



Conclusion
Ø DD domain orthogonal pulse (DDOP)

Ø Pseudo 2D impulse in on-grid DD domain 

Ø Pulse train with long duration and wide bandwidth

Ø “Circumvent” the limits of the uncertainty principle

Ø DDOP-based ODDM waveform

ü A promising waveform candidate for ISAC

ü Embracing DD channel property

Ø Many open issues. More details at: https://oddm.io
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https://oddm.io/
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